
NASA-C_-201860 5

DATA COMPRESSION OF DISCRETE SEQUENCE:
A TREE BASED APPROACH

USING DYNAMIC PROGRAMMING

Guruprasad Shivaram, Guna Seetharaman and T. R. N. Rao

The Center for Advanced Computer Studies

University of Southwestern Louisiana

Lafayette, LA 70504-4330

{gps, guna, rao }Qcacs. usl. edu

Phone : (318) 482-6875

Fax: (318) 482-5791

EXTENDED ABSTRACTf

1. ABSTRACT

A dynamic programming based approach for data compression of a 1D sequence is pre-

sented. The compression of an input sequence of size N to that of a smaller size k is achieved

by dividing the input sequence into k subsequences and replacing the subsequences by their

respective average values. The partitioning of the input sequence is carried with the intention

of reducing the mean squared error in the reconstructed sequence. The complexity involved in

finding the partitions which would result in such an optimal compressed sequence is reduced

by using the dynamic programming approach, which is presented.

2. INTRODUCTION

Problem Definition. The problem is defined as follows. Given a 1D input sequence

of size N, and a compression parameter k, we need to divide the input sequence into k sub-

sequences and replace each of the subsequence by its average value. The goal is to find an

optimal partitioning that minimizes the error due to this approximation process. If the input

sequence is partitioned at points ni = nO,nl,''',nk, with no = 1 and nk = N, the net error

due to approximation is

i=1

t This work was partly supported by a grant ffomthe National Science Foundation NSF 9210926and by

NASA under the gr&nt NAG-W-4013. Submitted to the SIAM - ACM Eighth International Symposium on

Discrete Algorithms, Jan 1997.

2

where li is the length of the subsequence i. The parameter li, and the parameters resulting

due to approximation, namely variance, _ri, and mean, #i, are given by

li =rti -- rti--1

rti

= Z
i=ni- 1

ni
Ei=n,__f(n)

#i =
_i -- r/i-1

Motivation Image data compression involves minimization the number of bits required

to represent an image. Data compression is used extensively in applications involving data

transmission and data storage. Data transmission applications include remote sensing via

satellite, radar and sonar, teleconferencing, computer communications, facsimile transmission.

Image storage is required for medical images, magnetic resonance imaging, digital radiology,

weather maps, geological surveys, finger print storage etc.

Data compression methods can be broadly divided into two categories, called lossless and

lossy compression techniques. From an algorithmic stand point, they are classified into: 1)

spatial domain methods; 2) transform domain methods; 3) statistical methods; and 4) hybrid

methods. There exists another classification, in information theory, where these algorithms are

divided as: channel based methods, and source based methods.

The approach described in this paper follows a lossy compression strategy. We solve the

problem by mapping the input sequence onto the leaves i.e., , external nodes, of a complete

binary tree, as shown in Figure 1. We adopt a compact binary tree representation. The internal

nodes of the binary tree have a value equal to the mean of that of their respective children. A

closer look reveals that the problem at hand is equivalent of one of finding a outset of size k in

the binary tree, as shown in Figure 2. The complexity involved in such an effort is reduced by

using the proposed dynamic programming approach.

3. PRELIMINARY CONCEPTS

For an input sequence of size N, the height, h, of the binary tree will be equal to log2N.

Assuming that the node j is at level d, the mean and variance of the l = 2 h-d-1 leaf nodes

below it, will be equal to

d_O /_

ii............... iiiiiiii iiiiiiii :.......
a_÷i a_÷2 a_-1 a2,,

Figure 1. The figure illustrates the building of the binary compression tree.

l(j+l)--1

#J = Z
i=lj

/(j-t-1)--I

2
O'j =

i=lj

2
Cj =njO'j

ai

(ai --/_j)2

Each internal node j in the tree stores the mean value p j and a cost function Cj, where

. 2Cj n I o'j, o'j being the variance of the leaves that are the descendants of j. The cost function

would thus represent the net error that would be introduced if the values of these leaves were

replaced by _j. The cost function, at j can be recursively obtained from the mean and cost

functions of its two immediate children using the relationship

_2j n c _2j+l

/'/J-- 2

2 2 r/2J ¢

njaj =n2ja22j + n2j+la2j+l + _tP2j - #2j+1)

Given the compressionparameter k, the problem of data compression is one of finding a

node outset, which is a set of k nodes, that seperates the root from all its leaves. For example

the dashed line in Figure 2 constitutes a outset of size k = 11. Thus, the problem of finding a

sequence of length k is equivalent to one of finding a outset, containing/_" elements in the binary

tree. The input signal can be reconstructed, with some error, from the outset by propogating

the mean value stored at each node in the outset to the leaves that are its descendants in the

binary tree, as shown in the Figure 2. Also, the total mean square error in the reconstructed

sequence can be computed by simply adding the cost functions stored at each node in the

outset.

Thus, the problem of finding an optimal compressed sequence becomes one of finding a

cutset in the compression tree from which if we reconstruct the signal of length N, it would be

best represent the original signal. A outset, containing k elements ,would contain/_"- 1 internal

nodes in the binary tree. Thus one of the approaches towards finding an optimal solution would

be to construct all the binary trees containing 2k - 1 nodes, with the limitation that the height

of the tree does not exceed log22k - 1, and find the tree that would best reproduce the original

signal. Without the limitation the problem has an exponential complexity [1]. Thus, this

direct approach toward solving the problem is not feasible. However, the proposed dynamic

programming approach solves the problem with a complexity of O(n 2lo9n).

4. DYNAMIC PROGRAMMING SOLUTION

The problem of data compression has two key ingredients that make a dynamic program-

ming solution feasible: optimal substructure and overlapping subproblems [1].

A problem is said to have an optimal substructure when it obeys the Principle of Opti-

mality [2]. The principle states that an optimal sequence of decisions has the property that

whatever the initial state and decision are, the remaining decisions must constitute an opti-

mal decision sequence with regard to the state resulting from the first decision. To explain

the suitability of applying the dynamic programming technique it is necessary to describe the

process of finding the node cutset.

t6

26 26 56 20 2 30 10 22 50 70 16 24 3 29 94 I00

36

32 32 32 32 16 16 10 22 50 70 16 24 3 29 96 %

An example illustrating the building of the The figure illustrates the reconstruction of the

binary compression tree for an input sequence of sequence for the given cutset

size 16

Figure 2. The figures illustrate the compression and the reconstruction of the input sequence

of size 16. A cutset containing]¢ elements would give us a compressed sequence of size k. The

figure on the right illustrates the reconstruction of the sequence of size 16 by propogation of

the mean at each node of the cutset to its leaves.

A cutset CS, having k nodes can be viewed as being a result of the concatenation of two

outsets, LCS and RCS, that belong to the left and right subtrees of the root of the binary

tree, respectively. If the number of nodes in LCS is p then RCS would contain k - p nodes.

Thus the cost of transmitting CS is equal to the sum of costs of transmitting LCS and RCS.

We thus need to find a p, 1 <_ p < N that would give us a CS of minimum cost. The key to

obtaining an optimal solution is that given a value of p, LCS and RCS should by themselves

be the results of an optimal merger. If this were not obeyed it would be possible to find a LCS

and/or RCS that would be of a lesser cost and hence would result in a final outset having a

lower cost. Thus, the optimal solution to the problem is a result of optimal solutions for the

subproblems, which indicates that the problem exhibits an optimal substructure.

To find the optimal solution we modify our representation of the cost function slightly.

The cost function, represented by C(j, k), would represent the total error that would result if

we were to include a outset of size k, from a subtree with root at node j, in the final outset.

Note that C(j, 1) would represent the total error if the mean value stored at node j is the

outset. C(j, 1) can be computed by using the formula.

C(j, 1) = C(2j, 1) + C(2j + 1,1) + -_J-(p2j - #2j+,)

Thus, the total error that would result if we transmit a sequence of size k for an input

sequence of size n will be C(0, k). Equivalently, the optimal solution to the compression

problem can be obtained if we define C(j, k) as

C(j,k)= { pj fork=l}minl___p<nC(2j,p)+C(2j+l,k-p) fork> 1
(1).

One method of solving the above problem would be to adopt divide and conquer approach

and solve the problem top-down. But the problem of data compression has a "small" space

of subproblems and is of a polynomial input size. A divide and conquer approach solves the

same subproblems over and over again thus increasing the complexity.

a28 a29 a30 a31

a7

C
- .

a28 a2.9 a30 a3l

Figure 3. The figure gives an example of a situation where a recursive solution to the

data compression problem does not take advantage of the optimal substructure inherent in the

problem.

The complexity involved in the top-down approach of solving the problem can be reduced

by using a dynamic programming approach. While the recursive algorithm solved the subprob-

lems a number of times, the dynamic programming approach solves each of them only once.

The dynamic programming approach obtains an optimal solution to the problem by using a

bottom-up approach, where the cost of the optimal outsets of a subtree are obtained from those

of its subtrees. The optimal solution to the various subproblems are stored in a tabular form

and is looked up whenever necessary, instead of being solved all over again.

a28 a29 _0 aY
,+

a7

c

_8 a29 a30 _1

Figure 4. The figures indicate that both, CS 1 and CS2, have the same subproblem, in-

dicated within the dotted box. A recursive solution would solve the subproblem during the

evaluation of both CS 1 and CS 2.

The table for an input sequence of size eight is shown in Figure 5. As is evident from the

figure, the table contains a block for each node in the compression tree. Thus the number of

blocks at any level in the table is equal to the number of nodes in the tree at the corresponding

level. The number of entries in each block of the table is equal to the maximum number of

resources that can be allocated to a subtree with its root at the corresponding node in the tree.

The entries in a block j store the value of the cost, C(j, k), 1 <_ k <_ rnaximurnresources, of

all the optimal outsets. The values of C(j, k) is found by using the formula (1). Note that the

values of C(2j, *) in (1) has already been computed and stored in the table and its value can

be obtained by looking up the corresponding entry in the table. The complexity of solving the

problem using this technique is O(n21ogn).

5. EXPERIMENTAL RESULTS

The dynamic programming technique was implemented and was tested on a number of

images after representing the image as a 1D sequence. The results of applying the technique

on a human face and on an oceanographic image have been presented in Figures 6 and 7

respectively. It is seen that the technique reproduces the sharp edges very well. It is also

seen that the technique produces very good results on the oceanographic image as the image

is largely flat.

6. CONCLUSION

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 5. Table for storing the C(j, k) for an input sequence containing eight el-

ements. The number above each box indicates the corresponding node number in the

compression tree. Note that the number of entries in each box is equal to the maximum

number of nodes that can be allocated to each node.

The proposed method has been tried on several images. The experimental results indicate

the compression is efficient in reproducing sharp edges. This method will be equivalent to

wavelet in performance. Our method divides the 1D sequence of numbers into several runs

whose length is restricted to powers of two. This enables us to solve the identification of

optimal cutset in a tractable way. An arbitrary run-length coding is NP. Further results and

comparative studies will be presented in the final paper.

7. BIBLIOGRAPHY

[1] Leiserson Cormen and Rivest. Introduciton to Algorithms. Mc Graw Hill, 1994.

[2] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

10

Bit rate=l.49 bits/Pixel

Figure

Bit rate=2.25 bits/Pixel

Bit rate=3.0 bits/Pixel Original image

Figure 6. Results of applying the compression technique on a human face.

11

Bit rate=0.6 bits/Pixel

Figure .

Bit rate=0.97 bits/Pixel

Bit rate=l.33 bits/Pixel Original image

Figure 7. Results of applying the compression technique on an oceanographic image.

